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Abstract

This paper presents an upgrade on the key generation algorithm of a current variant of the
Goldreich-Goldwasser-Halevi lattice-based encryption scheme, referred to as the GGH-MKA
cryptosystem. The keys for this cryptosystem consisting of lattice bases where the private key
is required to be a ‘good’ basis while the public key is required to be a ‘bad’ basis to ensure
the cryptosystem works effectively. In the key generation algorithm of the GGH cryptosystem,
the good and bad features of the lattice bases are measured by computing orthogonality-defect
value. If the value is ‘close to 1’, the basis is considered as a good basis. On the contrary, the
basis is considered as a bad basis if its orthogonality-defect value is ‘far from 1’. Clearly, the
consideration on various subjective terms could potentially trigger technical error during the
key generation processes. In this paper, we proposed new conditions on the private and public
bases of the GGH-MKA cryptosystem. Instead of depending solely on the orthogonality-defect
values, the proposed conditions could make the measurement of good and bad bases in the key
generation algorithm of the GGH-MKA cryptosystem becomes clearer and deterministic.

Keywords: closest-vector problem; smallest-basis problem; lattice; good basis; bad basis; GGH
cryptosystem; lattice-based cryptography.
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1 Introduction

Post-quantum cryptography (PQC) is a new direction of modern cryptography to cope with
the emergence of quantum-based attacks. With the ability to solve hard computational problems
underlying number theoretical-based cryptosystems, Shor’s quantum algorithm [18] potentially
made the Rivest-Shamir-Adleman (RSA) [16], El-Gamal [3] and Elliptic Curve [8] cryptosystems
considered broken. One of the celebrated alternatives in the PQC is lattice-based cryptography
which deploys lattice-based computational problems such as the Closest-Vector Problems (CVP)
[12], Shortest-Vector Problems (SVP) [1], Smallest-Basis Problems (SBP) [7], and some variants
of these problems as security backbone.

Since the 1990s, several lattice-based cryptosystems have been proposed with various security
and efficiency features. For instance, the NTRU, which was initially published in [6]. The system
continues to evolve as people release new versions and variations intended to make it more secure
against attacks. One of NTRU’s central claims to fame over systems like RSA is that NTRU is
not known to be vulnerable against attacks mounted by quantum computers and is thus being
studied for its application in a post-quantum-computer world. Another earlier significant lattice-
based cryptosystem is the Goldreich-Goldwasser-Halevi encryption scheme commonly referred
to as the GGH cryptosystem [5] was the first method judged viable. It was conjectured that the
lattice problems underlying the GGH cryptosystem, known as GGH-CVP and GGH-SBP, were
invulnerable in lattice dimensions 300 and beyond. However, a significant flaw in its design has
allowed the simplification of the GGH-CVP. Consequently, embedding-based attacks launched by
Nguyen [14] made the GGH cryptosystem in lattice dimensions of 200 up to 350 broken. Later,
Lee and Hahn [9] launched another embedding-based attack and made the GGH cryptosystem
in lattice dimension of up to 500 broken.

Various attempts have been proposed to make the GGH cryptosystem survives. Some of these
attempts improved the efficiency of the GGH cryptosystem to make it remains practical in lattice
dimensions beyond 500 where the Nguyen and Lee-Hahn embedding attacks defective as done
in [13] and [15]. However, the flaw of the GGH cryptosystem remains unrepaired. It could be
re-exploited by other embedding-based attacks in the future [10]. There are other attempts to
repair the exploited flaw proposing some variants of GGH, such as the GGH-YK [19] and GGH-
YK-M [2] cryptosystems. Despite repairing the exploited flaw, these variants majorlymodified the
original design of the GGH cryptosystem. On top of that, the security of these variants relies on
new problems instead of the original GGH-CVP.

Recently, a new variant of the GGH cryptosystem is proposed in [11]. This variant is referred
to as the GGH-MKA cryptosystem. Through minor modification on the original design of the
GGH cryptosystem, this variant repaired the exploited flaw by the Nguyen’s and Lee-Hahn’s em-
bedding attacks. This variant also maintains the security dependency on the GGH-CVP. By intro-
ducing a new set of entries for the error vector ~e and its distribution guideline, the simplification
of the GGH-CVP as done by Nguyen’s embedding attacks could be completely prevented. At the
same time, the GGH-CVP distance also could be maintained as σ

√
n.

Security of the GGH-MKA cryptosystem relies on the hardness of the GGH-CVP and GGH-
SBP. In both problems, quality measurement of the lattice bases is crucial. The private basis is
required to be a good basis to ensure the correctness of the decryption. On the other hand, the
public basis is required to be a bad basis to prevent attacks from an adversary. If the private basis
is not good enough, then decryption would not recover the original message. If the public basis is
not bad enough, it could be used for unauthorized decryption purposes by the adversary [11]. In
the key generation algorithm of the GGH cryptosystem, the quality measurement of lattice bases
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depends solely on the orthogonality-defect value of the bases. If the value is close to 1, the basis
is considered as a good basis. On the contrary, it is considered a bad basis if the orthogonality-
defect value is far from 1. The consideration for ‘close to 1’ and ‘far from 1’ is still too general and
subjective. A technical error might occur due to confusion on these subjective terms. Any mistake
in the key generation algorithm could trigger decryption error and security breach.

In this paper, we propose an upgrade on the key generation algorithm of the GGH-MKA cryp-
tosystem by introducing new conditions on the generated bases. Instead of depending solely on
the orthogonality-defect value, these conditions can be considered to ensure that the private basis
would make decryption succeed without an error, and unauthorized decryption using the public
basis would undoubtedly fail. Through the proposed upgrade, quality measurement of the pri-
vate and public bases could be done deterministically. Clearer and deterministic mechanisms are
demanded, making the key generation algorithm of the GGH-MKA cryptosystem free from any
technical error.

This paper is organized in the following outline. Somemathematical foundations are provided
in the next section. In Section 3, key generation, encryption, and decryption algorithms of the
GGH-MKA cryptosystem are presented. Then, the proposed conditions on the private and public
bases are presented in Section 4, and mathematical proofs to justify our proposal. Finally, this
paper is concluded in Section 5.

2 Mathematical Foundation

Considerm,n ∈ N. Entries of a vector~g ∈ Rm are represented as~g =


g1
g2
...
gm

where g1, g2, . . . , gm ∈

R. A set containing n vectors,G = {~g1, ~g2, . . . , ~gn}where ~g1, ~g2, . . . , ~gn ∈ Rm can be represented in

matrix form, G ∈ Rm×n as G =


g1,1 g1,2 · · · g1,n
g2,1 g2,2 · · · g2,n
...

...
. . .

...
gm,1 gm,2 · · · gm,n

 . Consider the following definition:

Definition 2.1. [7] Let G = {~g1, ~g2, . . . , ~gn} where ~g1, ~g2, . . . , ~gn ∈ Rm. Then G is considered linearly
independent if the only way to make the equation

∑n
i=1 ai~gi =

~0 holds is when ai = 0 for all i = 1, 2, . . . , n.
Otherwise, G is considered linearly dependent.

Linearly independent G can be used to generate lattice L, denoted as L(G) = L. It is defined as
follows:

Definition 2.2. [4] Let G = {~g1, ~g2, . . . , ~gn} where ~g1, ~g2, . . . , ~gn ∈ Rm be linearly independent with
m ≥ n. A lattice L ⊂ Rm that is spanned by G, denoted as L(G) = L is defined as,

L(G) =

{
~v =

n∑
i=1

ai~gi

∣∣∣∣ ~gi ∈ G and ai ∈ Z,∀i = 1, 2, . . . , n

}
. (1)

The set G that spans the lattice L is called lattice basis and the vectors ~g1, ~g2, . . . , ~gn ∈ G are
called basis vectors. Since G ∈ Rm×n, the lattice L(G) as defined in Definition 2.2 has dimension,
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dim(L(G)) = n and rank, rank(L(G)) = m. When m = n, the lattice L(G) is referred to as full
rank lattice. Beyond this point, all considered lattices are full-rank lattices unless stated otherwise.

For n ≥ 2, the lattice L can be spanned by infinitely many bases. These bases are mathemati-
cally related as follows:

Proposition 2.1. [4] Let G,B ∈ R
n×n be linearly independent with columns ~gi,~bi ∈ R

n respectively
∀i = 1, . . . , n and U ∈ Zn×n be a unimodular matrix with det(U) = ±1. If G = BU , then L(G) =
L(B) = L ⊂ Rn.

Proposition 2.2. [7] Suppose that G,B ∈ R
n×n be the bases of the lattice L ⊂ R

n where L(G) =
L(B) = L. The value of the det(L) is an invariant, i.e., det(L) = det (L(G)) = det (L(B)) where
det (L(G)) = |det (G) | and det (L(B)) = |det (B) |.

Quality of a lattice basis is determined by the norm (length) and orthogonality (angle) of its
basis vectors.

Definition 2.3. [17] Let ~b ∈ Rn. The Euclidean norm of the vector ~b is computed as ‖~b‖ =
√∑n

i=1 b
2
i

where bi ∈ ~b for all i = 1, 2, . . . , n.

Definition 2.4. [7] Let G = {~g1, ~g2, . . . , ~gn} where ~g1, ~g2, . . . , ~gn ∈ Rn be a basis for the lattice L(G) =
L ⊂ Rn. For k, l ∈ N and k, l ∈ [1, n], the dot product of ~gk, ~gl ∈ G is computed as ~gk ·~gl =

∑n
i=1 gi,k ·gi,l

where gi,k ∈ ~gk and gi,l ∈ ~gl for all i = 1, 2, · · · , n. If ~gk · ~gl = 0 for all k, l ∈ [1, n] and k 6= l, then G is
considered an orthogonal basis for the lattice L. Otherwise, it is considered as non-orthogonal basis.

Thedegree of non-orthogonality of lattice basis can bemeasured by computing the orthogonality-
defect value of the basis as follows:

Definition 2.5. [5] Let G ∈ Rn×n with columns ~gi ∈ Rn for all i = 1, 2, · · · , n be a basis for the lattice
L(G) = L ⊂ Rn. The orthogonality defect of the basis G is computed as,

orthdef (G) =

∏n
i=1 ‖~gi‖
|det (G) |

. (2)

If the basis vectors ~g1, ~g2, . . . , ~gn are orthogonal to each other, then orthdef (G) = 1. Otherwise,
orthdef (G) > 1.

3 GGH-MKA Cryptosystem

Key generation, encryption and decryption algorithms of the GGH-MKA cryptosystem are
given as the following [11]. In these algorithms, consider a scenario where Bob wants to send a
secret message ~m ∈ Zn to Alice by using the GGH-MKA cryptosystem.
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Algorithm 1 Key generation algorithm of the GGH-MKA cryptosystem is done by Alice as the
recipient.
Input: Parameter δ ∈ Nwhere σ > 2.
Output: Public key (B, σ, n), private key (G,U), set of entries E and its distribution guideline.
1: Decide the lattice dimension n as n = (4σ − 2)k where k ∈ N.
2: Generate a good basis G ∈ Zn×n such that orthdef (G) ≈ 1.
3: Generate a unimodular matrix U ∈ Zn×n.
4: Compute a bad basis B ∈ Zn×n as B = GU−1 and orthdef (B) far from 1.
5: Set the set E = {(2− σ), (1− σ), σ, (σ + 1)} and distribution guideline as follows:

ei =


(2− σ) for n

4σ−2 number of entries,
(1− σ) for σn−n2σ−1 number of entries,
σ for n

4σ−2 number of entries,
(σ + 1) for σn−n2σ−1 number of entries.

(3)

6: Keep the private key (G,U) secretly and send the public key (B, σ, n) together with the set E
and distribution guideline in equation (3) to the sender.

Algorithm 2 Encryption algorithm of the GGH-MKA cryptosystem is done by Bob as the sender.
Input: Public key (B, σ, n), set of entries E and its distribution guideline.
Output: Ciphertext ~c ∈ Rn.
1: Generate plaintext ~m ∈ Zn.
2: For all i = 1, . . . , n, generate the error vector ~e ∈ Zn with entries ei ∈ ~e that are randomly se-

lected from the set E = {(2− σ), (1− σ), σ, (σ + 1)} based on the given distribution guideline
in equation (3) from the recipient.

3: Perform the encryption as ~c = B~m+ ~e.
4: Send the ciphertext ~c to the recipient and keep the error vector ~e secretly.

Algorithm 3 Decryption algorithm of the GGH-MKA cryptosystem is done by Alice as the recip-
ient.
Input: Ciphertext ~c ∈ Rn from the sender and private key (G,U).
Output: Plaintext ~m ∈ Zn.
1: Compute vector ~x ∈ Rn as ~x = G−1~c.
2: Round each entry xi ∈ ~x to form an integer vector b~xe ∈ Zn with entries bxie ∈ Z such that

|xi − bxie| <
1

2
,

for all i = 1, . . . , n.
3: Perform the decryption as ~m = Ub~xe.

Effective decryption yields the original message as proven in the following proof of correctness:

Proposition 3.1. For n, σ ∈ N, let G,B ∈ Rn×n be bases for L, i.e., L(G) = L(B) = L ⊂ Rn such that
G = BU where U ∈ Zn×n is a unimodular matrix. Then, let ~c = B~m + ~e be a ciphertext vector where
~m ∈ Zn is a plaintext vector and ~e ∈ Zn is an error vector. If bG−1~ee = ~0, then UbG−1~ce = ~m which
indicates that decryption successful.
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Proof.

UbG−1~ce = UbG−1(B~m+ ~e)e, since ~c = B~m+ ~e

= UbG−1B~m+G−1~ee
= bUG−1B~me+ UbG−1~ee
= bB−1GG−1B~me+ UbG−1~ee, since U = B−1G

= b~me+ UbG−1~ee
= ~m+ UbG−1~ee, since ~m ∈ Zn.

Assume that, bG−1~ee = ~0. Therefore,

UbG−1~ce = ~m+ U(~0)

= ~m.

4 Upgrade on the Key Generation Algorithm of the GGH-MKA
Cryptosystem

In the GGH-MKA cryptosystem, the threshold parameter σ is required as σ > 2 to ensure that
the entry (2− σ) 6= 0 and this allows each of the entries (2− σ) , (1− σ) , σ and (σ + 1) appears
in the error vector ~e. Furthermore, the lattice dimension n is determined as n = (4σ − 2) k where
σ > 2 and k ∈ N. Since n represents the dimension of the bases G,B ∈ Rn×n, then the selection
of the threshold parameter σ is done prior the generation of the private basis G. Recall the com-
munication scenario between Alice and Bob in the previous section. In the following discussion,
consider Eve as an unauthorized party who wants to recover the secret message ~m ∈ Zn that is
sent from Bob to Alice.

4.1 Condition on the Private Basis

To be considered as a private basis, it is required that orthdef (G) ≈ 1 to ensure that G is a
good basis. In addition, the generated G is also required to fulfill the condition that the rounded
vector bG−1~ee = ~0 in order to avoid decryption error, as proven in Proposition 3.1. Although
the threshold parameter σ belongs to Alice, the arrangement of the entries (2− σ) , (1− σ) , σ and
(σ + 1) in the error vector ~e is fully determined by Bob. Without knowing the exact entries of the
error vector ~e, how could Alice check whether the generated G satisfies the condition bG−1~ee = ~0
or not? To address this issue, consider the following proposition:

Proposition 4.1. For n, σ, k ∈ N where n = (4σ − 2) k and σ > 2, let G ∈ Zn×n,~t ∈ {σ + 1}n and
~e ∈ Zn where the entries ei ∈ ~e are selected randomly from E = {(2− σ), (1− σ), σ, (σ + 1)} based on
the distribution guideline in equation (3) for all i = 1, . . . , n. If bG−1~te = ~0, then bG−1~ee = ~0.

Proof. Denote the entries of the inverse matrix G−1 ∈ Rn×n as g′i,j ∈ G−1 for all i, j = 1, . . . , n.
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Suppose that bG−1~te = ~0. Note that,

G−1~t =


g′1,1 g′1,2 · · · g′1,n
g′2,1 g′2,2 · · · g′2,n
...

...
. . .

...
g′n,1 g′n,2 · · · g′n,n



σ + 1
σ + 1

...
σ + 1



=


(σ + 1)

(
g′1,1 + g′1,2 + · · ·+ g′1,n

)
(σ + 1)

(
g′2,1 + g′2,2 + · · ·+ g′2,n

)
...

(σ + 1)
(
g′n,1 + g′n,2 + · · ·+ g′n,n

)
 .

Since bG−1~te = ~0, this implies that∣∣ti (g′i,1 + g′i,2 + · · ·+ g′i,n
)∣∣ < 1

2
,

where ti ∈ ~t and g′i,j ∈ G−1 for all i, j = 1, . . . , n. On the other hand,

G−1~e =


g′1,1 g′1,2 · · · g′1,n
g′2,1 g′2,2 · · · g′2,n
...

...
. . .

...
g′n,1 g′n,2 · · · g′n,n



e1
e2
...
en

 =


e1
(
g′1,1 + g′1,2 + · · ·+ g′1,n

)
e2
(
g′2,1 + g′2,2 + · · ·+ g′2,n

)
...

en
(
g′n,1 + g′n,2 + · · ·+ g′n,n

)
 .

For any σ ∈ N and σ > 2,
|σ + 1| > |σ| > |1− σ| > |2− σ| .

This implies that, ∣∣ti (g′i,1 + g′i,2 + · · ·+ g′i,n
)∣∣ ≥ ∣∣ei (g′i,1 + g′i,2 + · · ·+ g′i,n

)∣∣ ,
for any i-th row of the vectors bG−1~te and bG−1~ee for all i = 1, . . . , n. Since∣∣ti (g′i,1 + g′i,2 + · · ·+ g′i,n

)∣∣ < 1

2
,

then ∣∣ei (g′i,1 + g′i,2 + · · ·+ g′i,n
)∣∣ < 1

2
,

as well for all i = 1, . . . , n. This implies that, bG−1~ee = ~0.

Lemma 4.1. For n, σ, k ∈ N where n = (4σ − 2) k and σ > 2, let G,B ∈ Zn×n where G and B be bases
for the lattice L ⊂ Rn and U is a unimodular matrix such that G = BU . Let ~c = B~m+ ~e be a ciphertext
vector where ~m ∈ Zn is a plaintext vector and ~e ∈ Zn is an error vector with entries ei ∈ ~e are randomly
selected from E = {(2− σ), (1− σ), σ, (σ + 1)} based on the distributions guideline in equation (3) for
all i = 1, . . . , n. If bG−1~te = ~0, then UbG−1~ce = ~m where ~t ∈ {σ + 1}n.

Proof. Given that G = BU,~c = B~m+ ~e and ~m ∈ Zn. Thus,

UbG−1~ce = UbG−1(B~m+ ~e)e, since ~c = B~m+ ~e

= UbG−1B~m+G−1~ee
= bB−1GG−1B~me+ UbG−1~ee, since U = B−1G

= b~me+ UbG−1~ee
= ~m+ UbG−1~ee, since ~m ∈ Zn.
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Suppose that bG−1~te = ~0. Based on Proposition 4.1, bG−1~ee = ~0 as well. Hence,

UbG−1~ce = ~m+ U(~0)

= ~m.

By satisfying the condition bG−1~te = ~0 in her key generation algorithm, Alice could ensure
that bG−1~ee = ~0. This indicates that, decryption error could be prevented and decryption yields
the plaintext vector ~m ∈ Z

n. Therefore, the generated basis G is not only required to satisfy
orthdef (G) ≈ 1 condition, it is also required to satisfy the condition that bG−1~te = ~0 in order to be
classified as a good basis and selected as a private basis in the GGH-MKA cryptosystem.

4.2 Conditions on the Public Basis

To be considered as a public basis, the orthdef (B) is required to be as far as possible from 1
to ensure that the basis B is a bad basis. The purpose is to ensure that the basis B could not be
used to perform the decryption algorithm. Without the private basis G, Eve could try to perform
decryption using the public basis B since the bases G and B are spanning the same lattice L, i.e.,
L(G) = L(B) = L. Suppose that decryption is done using the public basis B as follows,

~c = B~y, (4)

where ~y ∈ Rn is an unknown vector. Compute the vector ~y as follows,

~y = B−1~c. (5)

The vector ~y is then rounded asb~ye ∈ Zn such that

|yi − byie| <
1

2
,

where yi ∈ ~y and byie ∈ b~ye for all i = 1, . . . , n. Consider the following lemma:

Lemma 4.2. For n ∈ N, let ~c = B~m + ~e be a ciphertext vector where B ∈ Zn×n be a basis for the lattice
L(B) = L ⊂ Rn, ~m ∈ Zn is a plaintext vector and ~e ∈ Zn is an error vector. Suppose that, ~y ∈ Rn where
~y = B−1~c. Then, b~ye = ~m if and only if bB−1~ee = ~0.

Proof. ⇒ From ~c = B~m+ ~e, it implies that ~m = B−1(~c− ~e). Suppose that b~ye = ~m. Since ~m ∈ Zn,
then ~m = b~me. Thus,

~y = b~me

~y = bB−1(~c− ~e)e

~y = bB−1~ce − bB−1~ee

bB−1~ee = bB−1~ce − ~y.

Since ~y = B−1~c, then
bB−1~ee = bB−1~ce − bB−1~ce

bB−1~ee = ~0.
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⇐ Given that ~y = B−1~c,~c = B~m+ ~e and ~m ∈ Zn. Thus,

b~ye = bB−1~ce
= bB−1 (B~m+ ~e)e
= bB−1B~me+ bB−1~ee
= ~m+ bB−1~ee. (6)

Suppose that bB−1~ee = ~0. Hence, b~ye = ~m.

As proven in Lemma 4.2, the plaintext ~m can be recovered by executing the decryption algo-
rithm using the public basis B if and only if bB−1~ee = ~0. To prevent this from happening, the
public basis B is necessary to satisfy the condition that bB−1~ee 6= ~0. Without knowing the error
vector ~e, how could Alice check whether the generated B fulfils the condition bB−1~ee 6= ~0 or not?
To address this issue, consider the following proposition:

Proposition 4.2. For n, σ, k ∈ N where n = (4σ − 2) k and σ > 2, let B ∈ Zn×n, ~u ∈ {2 − σ}n and
~e ∈ Zn where the entries ei ∈ ~e are selected randomly from E = {(2− σ), (1− σ), σ, (σ + 1)} based on
the distribution guideline in equation (3) for all i = 1, . . . , n. If bB−1~ue 6= ~0, then bB−1~ee 6= ~0.

Proof. Denote the entries of the inverse matrix B−1 ∈ Rn×n as b′i,j ∈ B−1 for all i, j = 1, . . . , n.
Suppose that bB−1~ue 6= ~0. Note that,

B−1~u =


b′1,1 b′1,2 · · · b′1,n
b′2,1 bg′2,2 · · · b′2,n
...

...
. . .

...
b′n,1 b′n,2 · · · b′n,n




2− σ
2− σ

...
2− σ



=


(2− σ)

(
b′1,1 + b′1,2 + · · ·+ b′1,n

)
(2− σ)

(
b′2,1 + b′2,2 + · · ·+ b′2,n

)
...

(2− σ)
(
b′n,1 + b′n,2 + · · ·+ b′n,n

)
 .

Since bB−1~ue 6= ~0, this implies that∣∣ui (b′i,1 + b′i,2 + · · ·+ b′i,n
)∣∣ ≥ 1

2
,

for some i = 1, . . . , n where ui ∈ ~u and b′i,j ∈ B−1 for all i, j = 1, . . . , n. On the other hand,

B−1~e =


b′1,1 b′1,2 · · · b′1,n
b′2,1 b′2,2 · · · b′2,n
...

...
. . .

...
b′n,1 b′n,2 · · · b′n,n



e1
e2
...
en

 =


e1
(
b′1,1 + b′1,2 + · · ·+ b′1,n

)
e2
(
b′2,1 + b′2,2 + · · ·+ b′2,n

)
...

en
(
b′n,1 + b′n,2 + · · ·+ b′n,n

)
 .

For any σ ∈ N and σ > 2,
|2− σ| < |1− σ| < |σ| < |σ + 1| .

This implies that, ∣∣ui (b′i,1 + b′i,2 + · · ·+ b′i,n
)∣∣ ≤ ∣∣ei (b′i,1 + b′i,2 + · · ·+ b′i,n

)∣∣ ,
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for any i-th row of the vectors bB−1~ue and bB−1~ee for all i = 1, . . . , n. Since∣∣ui (b′i,1 + b′i,2 + · · ·+ b′i,n
)∣∣ ≥ 1

2
,

then ∣∣ei (b′i,1 + b′i,2 + · · ·+ b′i,n
)∣∣ ≥ 1

2
,

as well for some i = 1, . . . , n. This implies that, bB−1~ee 6= ~0.

Lemma 4.3. For n, σ, k ∈ N where n = (4σ − 2) k and σ > 2, let G,B,U ∈ Zn×n, where G and B be
bases for the lattice L ⊂ Rn and U is a unimodular matrix such that G = BU . Then, let ~c = B~m+ ~e be a
ciphertext vector where ~m ∈ Zn is a plaintext vector and ~e ∈ Zn is an error vector with entries ei ∈ ~e are
selected randomly from E = {(2− σ), (1− σ), σ, (σ + 1)} based on the distribution guideline in equation
(3) for all i = 1, . . . , n. If bB−1~ue 6= ~0, then b~ye 6= ~m where ~u ∈ {2− σ}n and ~y = B−1~c.

Proof. Given that ~y = B−1~cwhere G = BU , ~c = B~m+ ~e and ~m ∈ Zn. Thus,

b~ye = bB−1~ce
= bB−1 (B~m+ ~e)e
= bB−1B~me+ bB−1~ee
= ~m+ bB−1~ee. (7)

Suppose that bB−1~ue 6= ~0. Based on Proposition 4.2, bB−1~ee 6= ~0 as well. Hence,

b~ye = ~m+ bB−1~ee 6= ~m.

Other than measuring the value of orthdef (B), Alice also needs to ensure that the basis B sat-
isfies bB−1~ee 6= ~0 in order to be classified as a bad basis and selected as the public basis. Although
the error vector ~e is privately generated by Bob, Lemma 4.3 proves that it is sufficient for Alice to
check whether bB−1~ue 6= ~0 to ensure that the condition bB−1~ee 6= ~0 is satisfied.

4.3 The Upgraded Key Generation Algorithm of the GGH-MKA Cryptosystem

By considering the proposed conditions on the private and public bases, a new key generation
algorithm of the GGH-MKA cryptosystem is developed as the following:
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Algorithm 4 New key generation algorithm of the GGH-MKA cryptosystem is done by Alice as
the recipient.
Input: Parameter δ ∈ Nwhere σ > 2.
Output: Public key (B, σ, n), private key (G,U), set of entries E and its distribution guideline.
1: Decide the lattice dimension n as n = (4σ − 2)k where k ∈ N.
2: Generate a good basis G ∈ Zn×n. If

i) orthdef (G) ≈ 1, and

ii) bG−1~te = ~0 where ~t ∈ {σ + 1}n,
then G is accepted as a private basis. Otherwise, repeat Step 2.

3: Generate a unimodular matrix U ∈ Zn×n.
4: Compute a bad basis B ∈ Zn×n as B = GU−1. If

i) orthdef (B) far from 1, and

ii) bB−1~ue 6= ~0 where ~u ∈ {2− σ}n,
then B is accepted as a public basis. Otherwise, repeat Step 3 and Step 4.

5: Setup the set E = {(2− σ), (1− σ), σ, (σ + 1)} and its’ distribution guideline as follows:

ei =


(2− σ) for n

4σ−2 number of entries,
(1− σ) for σn−n2σ−1 number of entries,
σ for n

4σ−2 number of entries,
(σ + 1) for σn−n2σ−1 number of entries.

(8)

6: Keep the private key (G,U) secretly and send the public key (B, σ, n) together with the set E
and distribution guideline in equation (8) to the sender.

In two respects, the new key creation Algorithm 4 is distinct from the original key generation
Algorithm 1, Step 2 and Step 4. The original GGH cryptosystem and its current variant, the GGH-
MKA cryptosystem, use the key generationAlgorithm 1. In both cryptosystems, the orthogonality
of the produced basisG and the computed basisB is exclusively determined by their orthogonality
defect values, as mentioned in Steps 2 and 4 of Algorithm 1. If orthdef (G) ≈ 1, the generated G is
accepted as a private basis, whereas the computed B is accepted as a public basis if orthdef (B) is
far than 1. In Algorithm 4, new requirements are proposed in Steps 2(ii) and Step 4(ii) tomake the
process of determining whether the generated G and computed B are accepted or not as private
and public bases, respectively, more transparent, and deterministic.

Nevertheless, how near is it close to 1, and how distant is it far from 1? These measurements
are far too subjective and ad hoc. Hence, there is no measurable range that can be used to address
this subject. While the conditions in Step 2(i) and Step 4(i) are too subjective to determine, the
conditions in 2(ii) and 4(ii) may be determined by computing the vectors bG−1~te and bB−1~ue
and comparing those vectors to the vector ~0. Instead of relying entirely on subjective conditions
in Step 2(i) and Step 4(i), the GGH-MKA cryptosystem’s upgraded key generation algorithm
employs deterministic conditions in Step 2(ii) and Step 4(ii).
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5 Conclusion

This paper presents some additional conditions to be considered in the key generation algo-
rithm of the GGH-MKA cryptosystem. Using the proposed conditions, the generated basesG and
B by Alice as the recipient become more apparent and more specific. Alice could ensure that the
generated G would make the decryption free from error once the proposed condition as stated
in Lemma 4.1 for the basis G is satisfied. At the same time, Alice also could ensure that the ba-
sis B that is derived from the basis G would make decryption attempt by Eve using the basis B
would fail once the proposed conditions as stated in Lemma 4.3 for the basisB is satisfied. Instead
of relying solely on subjective measurement and general terms, the upgraded classification pro-
cess of the lattice bases G and B in the key generation algorithm of the GGH-MKA cryptosystem
becomes more precise and deterministic compared to the key generation algorithm of the GGH
cryptosystem.

TheGGHcryptosystem and the fatal attacks on it are developed and executed using early 2000s
computing technology. Thus, all the security and efficiency issues are discussed and concluded
based on experimental results conducted using those technologies. We are currently expanding
the breadth of our experimental results to resolve the security analysis and decryption failure
rate. Additionally, we analyse the efficiency issue in terms of computing time comparison. It
is worth highlighting the issue of decryption failure probabilities and their improvement when
circumstances are incorporated. These experimental comparisons address the topic of security
measurement using the public key in conjunction with the likelihood of decryption error using
the private key. We regard it as study material deserving of our future work.
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